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LIMIT THEOREMS FOR FUNCTIONALS OF A RANDOM WALK
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Throughout the paper we assume that the random variables 
[image: image20.wmf]d

n

Z

n

X

Î

,

are independent and 
[image: image21.wmf]d

n

n

n

n

Z

n

EX

EX

EX

Î

¥

<

=

=

=

,

,

1

,

0

2

2

2

s

. For 
[image: image22.wmf]1

³

n

, define the partial sums 
                                
[image: image23.wmf]()

k

kn

SnX

=

å

p

 .
The distribution of   S(n)  has been studied by Smythe [9], Gut [1-5].Klesov [8]  etc.

Suppose that the function  H(x)  satisfies  the condition
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Assume also the following condition
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We introduce the following class of differentiable functions:
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We shall write 
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Define the random variables 
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In this paper we investigate some questions on existence of generalized moments of random variables   (3) for a wide classes of boundaries 
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Theorem  1. Suppose that the condition (1) and (2) hold and 
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In recent years, various function classes proved the theorem on the simultaneous convergence ryadov.Eti three theorems generalize and clarifies a number rezult [3-5].
Theorem 2. Let 
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 > 1, and suppose that X, X1, X2, .. . are i.i.d. random variables with partial sums 
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The following are equivalent:
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Remark 3.1 The equivalence with respect to the moment assumptions should be interpreted as in our earlier results. 
The proofs of the theorems amount to rather straightforward generalizations of those in [2, 3] and are omitted, except for the following extension of Lemma 2.1 and Lemma 3.1. 
Lemma 2.1 For any random variable X and 
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Proof. The proof of the lemma is based on partial summation; cf. [4], Section 2.12 for results of this kind. We omit the details. 
 Lemma 3.1 For any random variable X and 
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The basis of the proof of the lemma is, again, partial summation, together with the fact that terms with equisized indices are equal, viz., we may write
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Where 
[image: image66.wmf].

1

},

|

:|

{

)

(

³

=

=

j

j

k

k

Card

j

d


Using this device the sums in the lemma turn into
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respectivly, after it remains to connect these sums of the respective tail probabilities to the appro-priate moment (cf. [4], Section 2.12).

In order to do so we also need the quantity
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with its asymptotics
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For details concerning these number theoretical matters we refer to [5], Chapter XVIII and to [10], relation (12.1.1) (for the case d = 2).
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